Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults
نویسندگان
چکیده
Power transformer rupture and fire resulting from an arcing fault inside the tank usually leads to significant security risks and serious economic loss. In order to reveal the essence of tank deformation or explosion, this paper presents a 3-D numerical computational tool to simulate the structural dynamic behavior due to overpressure inside transformer tank. To illustrate the effectiveness of the proposed method, a 17.3 MJ and a 6.3 MJ arcing fault were simulated on a real full-scale 360MVA/220kV oil-immersed transformer model, respectively. By employing the finite element method, the transformer internal overpressure distribution, wave propagation and von-Mises stress were solved. The numerical results indicate that the increase of pressure and mechanical stress distribution are non-uniform and the stress tends to concentrate on connecting parts of the tank as the fault time evolves. Given this feature, it becomes possible to reduce the risk of transformer tank rupture through limiting the fault energy and enhancing the mechanical strength of the local stress concentrative areas. The theoretical model and numerical simulation method proposed in this paper can be used as a substitute for risky and costly field tests in fault overpressure analysis and tank mitigation design of transformers.
منابع مشابه
Correction: Numerical Methods for the Analysis of Power Transformer Tank Deformation and Rupture Due to Internal Arcing Faults
The order of Figs. 6 and 7 is switched. The figure captions appear in the correct order. article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملCharacterization of Power Transformer Electromagnetic Forces Affected by Winding Faults
Electromagnetic forces in power transformer windings are produced by interaction between the leakage fluxes and current passing them. Since the leakage flux distribution along the windings height is in two axial and radial directions, so the electromagnetic forces have two components, radial and axial. There is a risk that a large electromagnetic force due to the short circuit or inrush current...
متن کاملProtection Scheme of Power Transformer Based on Time–Frequency Analysis and KSIR-SSVM
The aim of this paper is to extend a hybrid protection plan for Power Transformer (PT) based on MRA-KSIR-SSVM. This paper offers a new scheme for protection of power transformers to distinguish internal faults from inrush currents. Some significant characteristics of differential currents in the real PT operating circumstances are extracted. In this paper, Multi Resolution Analysis (MRA) is use...
متن کاملPower Auto-transformer Mechanical Faults Diagnosis Using Finite Element based FRA
Frequency response analysis (FRA) is a sensitive method established for testing the mechanical integrity of transformers. However, interpretation of FRA signature still needs expert opinions and there is no FRA interpretation code generally accepted. Various mechanical faults with different extents on power transformers are required to aid FRA interpretation. To address this challenge, in...
متن کاملClassification of transformer faults using frequency response analysis based on cross-correlation technique and support vector machine
One of the most important methods for transformers fault diagnosis (especially mechanical defects) is the frequency response analysis (FRA) method. The most important step in the FRA diagnostic process is to differentiate the faults and classify them in different classes. This paper uses the intelligent support vector machine (SVM) method to classify transformer faults. For this purpose, two gr...
متن کامل